1 (i)	Vertical motion: initial speed $40 \sin \alpha$ $\begin{aligned} & h=(40 \sin \alpha) t-\frac{1}{2} g t^{2} \\ & h=0 \Rightarrow t=0 \text { or } \frac{2 \times 40 \times \sin \alpha}{g} \\ & \Rightarrow T=\frac{80 \sin \alpha}{g} \end{aligned}$	B1 M1 E1	Correct expression for h must be seen. Condone omission of the case $t=0$ Perfect argument (but still condone omission of $t=0$)
	Alternative Vertical motion: initial speed $40 \sin \alpha$ $v=40 \sin \alpha-g t$ When $v=0, t=\frac{T}{2}$ $\Rightarrow T=\frac{80 \sin \alpha}{g}$	(B1) (M1) (E1)	Correct expression for v must be seen Perfect argument
	Horizontal motion: initial speed $40 \cos \alpha$ $\begin{aligned} & R=40 \cos \alpha \times T \\ & \Rightarrow R=\frac{3200 \sin \alpha \cos \alpha}{g} \end{aligned}$	B1 M1 E1 [6]	There must be evidence of intention to use T Perfect argument
(ii)	$\begin{aligned} & \alpha=30^{\circ}: \\ & T=\frac{80 \sin 30^{\circ}}{9.8} \simeq 4.08 \\ & \Rightarrow R=\frac{3200 \times \sin 30^{\circ} \times \cos 30^{\circ}}{9.8}=141.4 \\ & \alpha=45^{\circ}: T=5.77 \end{aligned}$	B1 B1	Both answers required for the mark. Evidence of substitution required

	$\alpha=45^{\circ}: R=163.3$	$\begin{aligned} & \text { B1 } \\ & \text { [3] } \end{aligned}$	Accept 3 significant figures
(iii)	The standard model is not accurate; 125 is much less than 141.4	B1 [1]	The comment must be based on the figures given in the question
(iv)	Horizontal motion: $s=u t+\frac{1}{2} a t^{2}$ $\begin{aligned} & x=40 \cos 30^{\circ} \times t-\frac{1}{2} \times 2 \times t^{2} \\ & x=40 t \cos 30^{\circ}-t^{2} \end{aligned}$ Flight time $=4.08 \mathrm{~s}$ $R=40 \times \cos 30^{\circ} \times 4.08-\frac{1}{2} \times 2 \times 4.08^{2}$ $R=124.7$ This is close to the experimental result of 125 m	M1 A1 M1 E1 [4]	Use of correct formula A comparison with 125 m is required

(v)	When $\alpha=45^{\circ}, T=5.77$ $\begin{aligned} & R=40 \times \cos 45^{\circ} \times 5.77-\frac{1}{2} \times 2 \times 5.77^{2} \\ & R=129.9 \end{aligned}$ 129.9 m is not very close to 135 m so the model is not very accurate for this angle.	M1 A1 B1 [3]	Use of correct formula, with substitution for α and T. FT their T from (ii) but not 4 SC1 for substituting for T but using 30° for α Comparison of their 129.9 with 135 If 4.08 used for T and answer 98.8 obtained for R allow FT for this mark Allow argument that to get to 135 m takes 6.07 s which is greater than 5.77 s
(vi)	Allow for resistance in the vertical direction as well	B1 [1]	Any sensible comment, but do not award a mark for "Allow for air resistance" without mention of the vertical direction.

2		mark	notes
(i) (A)	$x=U t \cos 68.5^{\circ}$	$\begin{array}{r} \text { B1 } \\ \hline \end{array}$	
(i) (B)	$y=U t \sin 68.5^{\circ}-4.9 \times t^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow ' u ' $=U$. Allow $s \leftrightarrow c$. Allow g as $g, \pm 9.8, \pm 9.81, \pm 10$. Allow +2 . Accept not 'shown'. Do not allow +2 . Allow e.g $+0.5 \times(-9.8) \times t^{2}$ instead of $-4.9 t^{2}$. Accept g not evaluated
(ii)	either At $\mathrm{D}, \mathrm{y}=0$ so $U \sin 68.5^{\circ} T-4.9 \times T^{2}=0$ $\Rightarrow T\left(U \sin 68.5^{\circ}-4.9 T\right)=0$ so $T=0$ (at C) or $T=\frac{U \sin 68.5^{\circ}}{4.9}$ (at D) or Use (i)(A) and put $x=10$ with $t=T$ to get $U T \cos 68.5^{\circ}=10$	M1 M1 E1 M1 M1 E1 B1 4	Equating correct y to 0 or their y to correct value. Attempting to factorise (or solve). Allow $\div T$ without comment. Properly shown. Accept no ref to $T=0$. Accept $T=0$ given as well without comment. Find time to top Double time to the top
(iii)	Eliminating T from the results in (ii) gives $\begin{aligned} & U \cos 68.5^{\circ} \times \frac{U \sin 68.5^{\circ}}{4.9}=10 \\ & \text { so } U=11.98729 \ldots \text { so } 12.0 \text { (3 s. f.) } \end{aligned}$	$\begin{array}{r} \text { M1 } \\ \text { M1 } \\ \text { E1 } \\ 3 \end{array}$	Substituting, using correct expressions or their expressions from (ii). Attempt to solve for U^{2} or U. Some evidence seen. e.g. 142.8025.. $<U^{2}<145.2025 \ldots$ with clear statement, or 11.9... seen with clear statement or 11.98... seen. Accept 11.98... seen for full marks.
(iv)	continued ysicsAndMathsTutor.com		

(iv)	Require $U t \sin 68.5^{\circ}-4.9 t^{2}=-2$ Solving $4.9 t^{2}-U t \sin 68.5^{\circ}-2=0$ $t=-0.1670594541 \ldots, 2.4431591 \ldots$ (Using 12: - 0.1669052502.. , 2.445478886..) $\begin{aligned} & \text { Require } U \cos 68.5^{\circ} \times 2.44 \ldots-10 \\ & =0.7336 \ldots \text { so } 0.734 \mathrm{~m}(3 \mathrm{s.f.}) \\ & (U \operatorname{sing} 12 \text { consistently, } 0.7552 \ldots \\ & \text { so } 0.755(3 \mathrm{~s} . \mathrm{f} .)) \end{aligned}$	M1 M1 A1 M1 A1	Equating correct y to -2 or their y to correct value. Allow use of $U, 11.987 \ldots$ or 12 . Allow implicit ' $=0$ ' Dep on $1^{\text {st }} \mathrm{M} 1$. Attempt to solve a 3 term quadratic to find at least the + ve root. Allow if two correct roots seen WW. Accept only + ve root given Alternative method of e.g. finding time to highest point and then time to the ground. M1 all times attempted, at least one by a sound method. M1 both methods sound and complete. A1. Dep on first M1. Allow their expression for x. Allow ' -10 ' omitted. cao. Accept $0.73 \leq x \leq 0.76$
(v)	Eliminate t from (i) (B) using $t=\frac{x}{U \cos 68.5^{\circ}}$ from (i)(A) so $y=x \tan 68.5^{\circ}-\frac{4.9 x^{2}}{U^{2}\left(\cos 68.5^{\circ}\right)^{2}}$ We require $y=0$ when $x=10$ so $U=11.98729 \ldots$ so 12.0 ($3 \mathrm{~s} . \mathrm{f}$.)	M1 E1 M1 E1 4	May be implied. FT their (i). Clearly shown. Must see attempt to solve. Or use $x=10.73 \ldots$ when $y=-2$. Must see evidence of fresh calculation or statement that they have now got the same expression for evaluation.
		19	

3 (i)	$y(0)=1$	B1		
(ii)	Either $\frac{1}{2}(20+5)-5=7.5$ or $\begin{aligned} & y(7.5)=\frac{1}{100}\left(100+15 \times 7.5-7.5^{2}\right) \\ = & \frac{25}{16}(1.5625) \text { so } 1.5625 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	Use of symmetry e.g. use of $\frac{1}{2}(20+5)$ 12.5 o.e. seen 7.5 cao Att pt at y^{\prime} and to solve $y^{\prime}=0$ $k(15-2 x)$ where $k=1$ or $\frac{1}{100}$ 7.5 cao, seen as final answer FT their 7.5 A [SC2 only showing 1.5625 leads to $x=7.5$]	

\begin{tabular}{|c|c|c|c|c|}
\hline (iii) \& \begin{tabular}{l}
\[
4.9 t^{2}=\frac{25}{16}(1.5625)
\]
\[
t^{2}=0.31887 \ldots \text { so } t= \pm 0.56469 \ldots
\] \\
Hence 0.565 s (3 s.f.)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
E1
\end{tabular} \& \begin{tabular}{l}
Use of \(s=u t+0.5 a t^{2}\) with \(u=0\). Condone use of \(\pm 10, \pm 9.8, \pm 9.81\). If sequence of suvat used, complete method required. \\
In any method only error accepted is sign error \\
AG. Condone no reference to -ve value. www. 0.565 must be justified as answer to 3 s. f.
\end{tabular} \& 3 \\
\hline (iv) \& \[
\begin{aligned}
\& \dot{x}=\frac{12.5}{0.56469 \ldots}=22.1359 \ldots \\
\& \text { so } \left.22.1 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{~s} . \mathrm{f} .)\right) \\
\& \text { Either } \\
\& \text { Time is } \frac{20}{12.5} \times 0.56469 \ldots \mathrm{~s} \\
\& \text { so } 0.904 \mathrm{~s}(3 \mathrm{~s} . \text { f. }) \\
\& \text { or } \\
\& \text { Time is } \frac{20}{22.1359 \ldots} \text { s } \\
\& =0.903507 \ldots \text { so } 0.904 \mathrm{~s}(3 \mathrm{~s} . \text { f. }) \\
\& \text { or } \\
\& \text { (iii) }+\frac{7.5}{\text { their } \dot{x}} \\
\& \text { so } 0.904 \mathrm{~s}(3 \mathrm{~s} . \text { f. })
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
E1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or 25 / (\(2 \times 0.56469 .\). \\
Use of 12.5 or equivalent \\
22.1 must be justified as answer to 3 s . f. Don't penalise if penalty already given in (iii). \\
cao Accept 0.91 (2 s. f.) \\
cao Accept 0.91 (2 s. f.) \\
cao Accept 0.91 (2 s. f.)
\end{tabular} \& 5 \\
\hline (v) \& \begin{tabular}{l}
\[
\begin{aligned}
\& v=\sqrt{\dot{x}^{2}+\dot{y}^{2}} \\
\& \dot{y}^{2}=0^{2}+2 \times 9.8 \times \frac{25}{16} \text { or } \\
\& \dot{y}=0+9.8 \times 0.5646 \ldots \\
\& =\frac{245}{8}(30.625) \quad \dot{y}= \pm 5.539 \ldots
\end{aligned}
\] \\
so \(v=\sqrt{490+30.625}=22.8172 \ldots \mathrm{~m} \mathrm{~s}^{-1}\) so \(22.8 \mathrm{~m} \mathrm{~s}^{-1}\) (3 s. f.)
\end{tabular} \& M1
M1

A1

A1 \& | Must have attempts at both components |
| :--- |
| Or equiv. $u=0$. Condone use of $\pm 10, \pm 9.8, \pm 9.81$. |
| Accept wrong s (or t in alternative method) Or equivalent. May be implied. Could come from (iii) $v^{2}=u^{2}+2$ as used there. Award marks again. |
| cao. WWW | \& 4 \\

\hline hysi \& sAndMathsTutor.com \& \& \& 18 \\
\hline
\end{tabular}

4		Mark	Comment	Sub
	either We need $3.675=9.8 t-4.9 t^{2}$ Solving $4 t^{2}-8 t+3=0$ gives $t=0.5$ or $t=1.5$ or Time to greatest height $0=35 \times 0.28-9.8 t \text { so } t=1$ Time to drop is 0.5 total is 1.5 s then Horiz distance is $35 \times 0.96 t$ So distance is $35 \times 0.96 \times 1.5=50.4 \mathrm{~m}$	*M1 M1* A1 F1 M1 A1 A1 A1 B1 F1	Equating given expression or their attempt at y to ± 3.675. If they attempt y, allow sign errors, $g=9.81$ etc. and $u=35$. Dependent. Any method of solution of a 3 term quadratic. cao. Accept only the larger root given Both roots shown and larger chosen provided both +ve. Dependent on $1^{\text {st }}$ M1. [Award M1 M1 A1 for 1.5 seen WW] Complete method for total time from motion in separate parts. Allow sign errors, $g=9.81$ etc. Allow $u=35$ initially only. Time for $1^{\text {st }}$ part Time for $2^{\text {nd }}$ part cao Use of $x=u \cos \alpha t$. May be implied. FT their quoted t provided it is positive.	6
		6		

5		Mark	Comment	Sub
	Method 1 $\uparrow v_{\mathrm{A}}=29.4-9.8 T \quad \downarrow v_{\mathrm{B}}=9.8 T$ For same speed $29.4-9.8 T=9.8 T$ so $T=1.5$ and $V=14.7$ $\begin{aligned} H= & 29.4 \times 1.5-0.5 \times 9.8 \times 1.5^{2} \\ & +0 . \quad \times 9.8 \times 1.5^{2} \\ = & 44.1 \end{aligned}$ Method 2 $V^{2}=29.4^{2}-2 \times 9.8 \times x=2 \times 9.8 \times(H-x)$ $29.4^{2}=19.6 H$ so $H=44.1$ Relative velocity is 29.4 so $T=\frac{44.1}{29.4}$ Using $v=u+a t$ $V=0+9.8 \times 1.5=14.7$	M1 A1 M1 E1 F1 M1 A1 M1 B1 A1 M1 E1 M1 F1	Either attempted. Allow sign errors and $g=9.81$ etc Both correct Attempt to equate. Accept sign errors and $T=1.5$ substituted in both. If 2 subs there must be a statement about equality FT T or V, whichever is found second Sum of the distance travelled by each attempted cao Attempts at V^{2} for each particle equated. Allow sign errors, 9.81 etc Allow h_{1}, h_{2} without $h_{1}=H-h_{2}$ Both correct. Require $h_{1}=H-h_{2}$ but not an equation. cao Any method that leads to T or V Any method leading to the other variable Other approaches possible. If 'clever' ways seen, reward according to weighting above.	7
		7		

